If it's not what You are looking for type in the equation solver your own equation and let us solve it.
81+81=c^2
We move all terms to the left:
81+81-(c^2)=0
We add all the numbers together, and all the variables
-1c^2+162=0
a = -1; b = 0; c = +162;
Δ = b2-4ac
Δ = 02-4·(-1)·162
Δ = 648
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{648}=\sqrt{324*2}=\sqrt{324}*\sqrt{2}=18\sqrt{2}$$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-18\sqrt{2}}{2*-1}=\frac{0-18\sqrt{2}}{-2} =-\frac{18\sqrt{2}}{-2} =-\frac{9\sqrt{2}}{-1} $$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+18\sqrt{2}}{2*-1}=\frac{0+18\sqrt{2}}{-2} =\frac{18\sqrt{2}}{-2} =\frac{9\sqrt{2}}{-1} $
| 3(x+4)-2(1-x)=14x+45 | | 9Y=3+x | | 0.80x-1.20=0.40x+0.80 | | 3.8x+6.5=-3 | | f+9.04=-4.94 | | 5r^2+14r-3=0 | | 5(2h-1)-7h=4 | | 30-10x=100x+120 | | 5(1.8)^3x+9=12.6 | | j-900=60 | | (4+2)•r=5 | | 3.5x-7.5=13.5 | | 5(1.8)3x+9=12.6 | | -1.6x+3.6=-0.4x | | 8(1-3x)-12=-4-24x | | 676-c=219 | | P(4)p=0.20 | | 18-x=4x | | 806/c=-26 | | c-83=12 | | -1.6x+3.6= | | 88y=15 | | 2(z+7)=22 | | 91=84-q | | 3x+24=36x-42 | | 7/5=x/22.5 | | 15^3+25x^2=0 | | 3x-10x=100x+120 | | 2u-u-1=17 | | 7/4x=-1/4x-12 | | x11=-4x | | 9t-6t-t-2=10 |